LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – STATISTICS

THIRD SEMESTER – APRIL 2010

ST 3811 / 3808 - MULTIVARIATE ANALYSIS

PART – A

Date & Time: 21/04/2010 / 9:00 - 12:00 Dept. No.

Answer all the questions.

Max.: 100 Marks

 $(10 \times 2 = 20)$

1.If X = $(X_1, X_2)' \sim N_2 \left\{ \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ then write the c.f. of the marginal distribution of X₂.

2. Suggest unbiased estimators for μ and Σ when the sample is from N (μ , Σ).

3. If $X' = (X_1, X_2) \sim N_2 \left\{ \begin{pmatrix} 3 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ then obtain the density of the marginal distribution of X_1

- 4. Define Hotelling's T^2 statistics.
- 5. Define Fisher's Z-transformation
- 6. What is factor analysis?
- 7. Explain the concept of outliers in multivariate data analysis.
- 8. Outline single linkage procedure.
- 9. Distinguish between principal component analysis and factor analysis.

10. Explain Q-Q plots.

Answer any FIVE questions.

PART B

 $(5 \times 8 = 40)$

- 11. Find the multiple correlation coefficient between X_1 and X_2 , X_3 , ..., X_{p} . Prove that the conditional variance of X_1 given the rest of the variables cannot be greater than unconditional variance of X_1 .
- 12. Derive the c.f. of multivariate normal distribution.
- 13. Let $Y \sim N_p(0, \Sigma)$. Show that $Y'\Sigma^{-1}Y$ has $\chi 2$ distribution.
- 14. Obtain a linear function to allocate an object of unknown origin to one of the two normal populations.
- 15. Let $X \sim N_p (\mu, \Sigma)$. If $X^{(1)}$ and $X^{(2)}$ are two subvectors of X, obtain the conditional distribution of $X^{(1)}$ given $X^{(2)}$.
- 16. Giving suitable examples explain how factor scores are used in data analysis.
- 17.Let $(x_i, y_i)'$, i = 1, 2, 3 be independently distributed each according to bivariate normal with mean vector and covariance matrix as given below. Find the joint distribution of six variables. Also find the joint distribution of \overline{x} and \overline{y} .

Mean vector: $(\mu, \tau)'$, covariance matrix: $\begin{pmatrix} \sigma_{xx} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{pmatrix}$

18. Explain the principal component (principal factor) method of estimating L in the factor analysis method.

PART C

$(2 \times 20 = 40)$

- 19. a) If $X \sim N_p(\mu, \Sigma)$ then prove that $Z = DX \sim N_p(D\mu, D\Sigma D')$ where D is qxp matrix of rank $q \le p$.
 - b). Derive the procedure to test the equality of mean vectors of two p-variate normal populations when the dispersion matrices are equal. (10+10)
- 20.a) What are principal components?. Outline the procedure to extract principal components from a given correlation matrix.
 - b) What is the difference between classification problem into two classes and testing problem?. (14+6)
- 21.a) Explain in detail T^2 -Statistic with an illustration.

Answer any TWO questions.

- b) Distinguish between classification and discrimination with an illustration. (12+8)
- 22.a) Giving a suitable example describe how objects are grouped by complete linkage method.

b) Discuss the effect of an orthogonal transformation in factor analysis method in detail.

(8+12)
